- COUNTING ZEROS IN QUATERNION ALGEBRAS USING JACOBI FORMS
- 点击次数:
- 影响因子:1.318
- 所属单位:数学科学学院
- 发表刊物:TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
- 刊物所在地:201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA
- 项目来源:National Natural Science Foundation of China (Grant No. 11271283)
- 关键字:Jacobi forms, arithmetic of quaternion algebras
- 摘要:We use the theory of Jacobi forms to study the number of elements in a maximal order of a definite quaternion algebra over the field of rational numbers whose characteristic polynomial equals a given polynomial. A certain weighted average of such numbers equals (up to some trivial factors) the Hurwitz class number H(4n−r2). As a consequence we obtain new proofs for Eichler’s trace formula and for formulas for the class and type number of definite quaternion algebras. As a secondary result we derive explicit formulas for Jacobi Eisenstein series of weight 2 on Γ0(N) and for the action of Hecke operators on Jacobi theta series associated to maximal orders of definite quaternion algebras.
- 合写作者:周海港
- 论文类型:期刊论文
- 卷号:371
- 期号:9
- 页面范围:6487-6509
- ISSN号:0002-9947
- 是否译文:否
- 发表时间:2019-01-01
- 收录刊物:SCOPUS、CNKI、WOS
