CN

Kairui Feng

Supervisor of Doctorate Candidates

Supervisor of Master's Candidates

E-Mail: 

Education Level: Doctor′s Degree graduated

Degree: Doctor of Philosophy

Academic Titles: 智能科学与技术博士生导师

Alma Mater: 普林斯顿大学

Research Focus

Current Location: Home > Research Focus

强化学习驱动的城市智能环境管理

sym

Reinforcement learning–based adaptive strategies for climate change adaptation: An application for coastal flood risk management

《基于强化学习的自适应气候适应策略:纽约曼哈顿海岸洪水风险管理应用》

Kairui Feng, Ning Lin, et al.

  • Reinforcement learning reduces coastal flood adaptation costs by up to 77%. 强化学习可将沿海洪水适应成本最多降低77%。

  • RL integrates protection, accommodation, and retreat strategies for higher efficiency. 强化学习整合防护、适应与退避策略,提升经济效益。

  • RL effectively controls tail risks and adapts to climate uncertainties. 强化学习有效控制尾部风险,适应气候不确定性。

Nature Communications

sym

Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate

《气候变化下台风-停电-热浪复合灾害韧性研究》

Kairui Feng, Min Ouyang, Ning Lin

  • Developed a pioneering model to project power outage resilience under evolving climate conditions. 构建了创新模型,预测气候变化背景下电网停电韧性。

  • Proposed a cost-effective strategy to strengthen power systems against compound climate risks. 提出低成本强化电力系统应对复合气候灾害的策略。

  • Featured by NSFThe HillYahooMirageVox, etc.

NeurIPS

sym

RainNet: A large-scale imagery dataset and benchmark for spatial precipitation downscaling

《RainNet:空间降尺度降水图像数据集与基准》

Xuanhong Chen, Kairui Feng (co-first), et al.

  • Compiled a comprehensive real-world precipitation dataset (1979–2018). 收集并整理覆盖1979–2018年的大规模实测降水数据集。

  • Evaluated multiple downscaling methods to accurately model high-resolution rainfall patterns. 系统评估多种降尺度方法,提升高分辨率降水预测精度。

  • Provided high-resolution (4km) rainfall dataset and benchmark tools. 公布高分辨率(4km)降水数据及评估基准。

Download 数据集: Google Drive | 代码仓库: Github.